#pragma once #ifndef _FFXIENCRYPTION_H_ #define _FFXIENCRYPTION_H_ #include #include typedef unsigned char uint8; typedef unsigned short uint16; typedef unsigned int uint32; #define RBUFP(p,pos) (((uint8*)(p)) + (pos)) #define RBUFB(p,pos) (*(uint8*)RBUFP((p),(pos))) #define RBUFW(p,pos) (*(uint16*)RBUFP((p),(pos))) #define RBUFL(p,pos) (*(uint32*)RBUFP((p),(pos))) #define RBUFF(p,pos) (*(float*)RBUFP((p),(pos))) #define WBUFP(p,pos) (((uint8*)(p)) + (pos)) #define WBUFB(p,pos) (*(uint8*)WBUFP((p),(pos))) #define WBUFW(p,pos) (*(uint16*)WBUFP((p),(pos))) #define WBUFL(p,pos) (*(uint32*)WBUFP((p),(pos))) #define WBUFF(p,pos) (*(float*)WBUFP( namespace FFXIEncryption { #pragma pack(push,1) typedef struct { char id[16]; float fTransX,fTransY,fTransZ; float fRotX,fRotY,fRotZ; float fScaleX,fScaleY,fScaleZ; float fa,fb,fc,fd; long fe,ff,fg,fh,fi,fj,fk,fl; } OBJINFO; static BYTE key_table[0x100] = { 0xE2, 0xE5, 0x06, 0xA9, 0xED, 0x26, 0xF4, 0x42, 0x15, 0xF4, 0x81, 0x7F, 0xDE, 0x9A, 0xDE, 0xD0, 0x1A, 0x98, 0x20, 0x91, 0x39, 0x49, 0x48, 0xA4, 0x0A, 0x9F, 0x40, 0x69, 0xEC, 0xBD, 0x81, 0x81, 0x8D, 0xAD, 0x10, 0xB8, 0xC1, 0x88, 0x15, 0x05, 0x11, 0xB1, 0xAA, 0xF0, 0x0F, 0x1E, 0x34, 0xE6, 0x81, 0xAA, 0xCD, 0xAC, 0x02, 0x84, 0x33, 0x0A, 0x19, 0x38, 0x9E, 0xE6, 0x73, 0x4A, 0x11, 0x5D, 0xBF, 0x85, 0x77, 0x08, 0xCD, 0xD9, 0x96, 0x0D, 0x79, 0x78, 0xCC, 0x35, 0x06, 0x8E, 0xF9, 0xFE, 0x66, 0xB9, 0x21, 0x03, 0x20, 0x29, 0x1E, 0x27, 0xCA, 0x86, 0x82, 0xE6, 0x45, 0x07, 0xDD, 0xA9, 0xB6, 0xD5, 0xA2, 0x03, 0xEC, 0xAD, 0x62, 0x45, 0x2D, 0xCE, 0x79, 0xBD, 0x8F, 0x2D, 0x10, 0x18, 0xE6, 0x0A, 0x6F, 0xAA, 0x6F, 0x46, 0x84, 0x32, 0x9F, 0x29, 0x2C, 0xC2, 0xF0, 0xEB, 0x18, 0x6F, 0xF2, 0x3A, 0xDC, 0xEA, 0x7B, 0x0C, 0x81, 0x2D, 0xCC, 0xEB, 0xA1, 0x51, 0x77, 0x2C, 0xFB, 0x49, 0xE8, 0x90, 0xF7, 0x90, 0xCE, 0x5C, 0x01, 0xF3, 0x5C, 0xF4, 0x41, 0xAB, 0x04, 0xE7, 0x16, 0xCC, 0x3A, 0x05, 0x54, 0x55, 0xDC, 0xED, 0xA4, 0xD6, 0xBF, 0x3F, 0x9E, 0x08, 0x93, 0xB5, 0x63, 0x38, 0x90, 0xF7, 0x5A, 0xF0, 0xA2, 0x5F, 0x56, 0xC8, 0x08, 0x70, 0xCB, 0x24, 0x16, 0xDD, 0xD2, 0x74, 0x95, 0x3A, 0x1A, 0x2A, 0x74, 0xC4, 0x9D, 0xEB, 0xAF, 0x69, 0xAA, 0x51, 0x39, 0x65, 0x94, 0xA2, 0x4B, 0x1F, 0x1A, 0x60, 0x52, 0x39, 0xE8, 0x23, 0xEE, 0x58, 0x39, 0x06, 0x3D, 0x22, 0x6A, 0x2D, 0xD2, 0x91, 0x25, 0xA5, 0x2E, 0x71, 0x62, 0xA5, 0x0B, 0xC1, 0xE5, 0x6E, 0x43, 0x49, 0x7C, 0x58, 0x46, 0x19, 0x9F, 0x45, 0x49, 0xC6, 0x40, 0x09, 0xA2, 0x99, 0x5B, 0x7B, 0x98, 0x7F, 0xA0, 0xD0, }; static BYTE key_table2[0x100] = { 0xB8, 0xC5, 0xF7, 0x84, 0xE4, 0x5A, 0x23, 0x7B, 0xC8, 0x90, 0x1D, 0xF6, 0x5D, 0x09, 0x51, 0xC1, 0x07, 0x24, 0xEF, 0x5B, 0x1D, 0x73, 0x90, 0x08, 0xA5, 0x70, 0x1C, 0x22, 0x5F, 0x6B, 0xEB, 0xB0, 0x06, 0xC7, 0x2A, 0x3A, 0xD2, 0x66, 0x81, 0xDB, 0x41, 0x62, 0xF2, 0x97, 0x17, 0xFE, 0x05, 0xEF, 0xA3, 0xDC, 0x22, 0xB3, 0x45, 0x70, 0x3E, 0x18, 0x2D, 0xB4, 0xBA, 0x0A, 0x65, 0x1D, 0x87, 0xC3, 0x12, 0xCE, 0x8F, 0x9D, 0xF7, 0x0D, 0x50, 0x24, 0x3A, 0xF3, 0xCA, 0x70, 0x6B, 0x67, 0x9C, 0xB2, 0xC2, 0x4D, 0x6A, 0x0C, 0xA8, 0xFA, 0x81, 0xA6, 0x79, 0xEB, 0xBE, 0xFE, 0x89, 0xB7, 0xAC, 0x7F, 0x65, 0x43, 0xEC, 0x56, 0x5B, 0x35, 0xDA, 0x81, 0x3C, 0xAB, 0x6D, 0x28, 0x60, 0x2C, 0x5F, 0x31, 0xEB, 0xDF, 0x8E, 0x0F, 0x4F, 0xFA, 0xA3, 0xDA, 0x12, 0x7E, 0xF1, 0xA5, 0xD2, 0x22, 0xA0, 0x0C, 0x86, 0x8C, 0x0A, 0x0C, 0x06, 0xC7, 0x65, 0x18, 0xCE, 0xF2, 0xA3, 0x68, 0xFE, 0x35, 0x96, 0x95, 0xA6, 0xFA, 0x58, 0x63, 0x41, 0x59, 0xEA, 0xDD, 0x7F, 0xD3, 0x1B, 0xA8, 0x48, 0x44, 0xAB, 0x91, 0xFD, 0x13, 0xB1, 0x68, 0x01, 0xAC, 0x3A, 0x11, 0x78, 0x30, 0x33, 0xD8, 0x4E, 0x6A, 0x89, 0x05, 0x7B, 0x06, 0x8E, 0xB0, 0x86, 0xFD, 0x9F, 0xD7, 0x48, 0x54, 0x04, 0xAE, 0xF3, 0x06, 0x17, 0x36, 0x53, 0x3F, 0xA8, 0x11, 0x53, 0xCA, 0xA1, 0x95, 0xC2, 0xCD, 0xE6, 0x1F, 0x57, 0xB4, 0x7F, 0xAA, 0xF3, 0x6B, 0xF9, 0xA0, 0x27, 0xD0, 0x09, 0xEF, 0xF6, 0x68, 0x73, 0x60, 0xDC, 0x50, 0x2A, 0x25, 0x0F, 0x77, 0xB9, 0xB0, 0x04, 0x0B, 0xE1, 0xCC, 0x35, 0x31, 0x84, 0xE6, 0x22, 0xF9, 0xC2, 0xAB, 0x95, 0x91, 0x61, 0xD9, 0x2B, 0xB9, 0x72, 0x4E, 0x10, 0x76, 0x31, 0x66, 0x0A, 0x0B, 0x2E, 0x83, }; class FFXIEncryption { private: static BYTE Rotate(BYTE B, int ShiftSize) { return (BYTE)((B >> ShiftSize) | (B << (8 - ShiftSize))); } public: static bool Rotate(char* Data, int Offset, int Size, BYTE ShiftSize) { if(ShiftSize < 1 || ShiftSize > 8) return false; for(int i = 0; i < Size; i++) WBUFB(Data, Offset + i) = Rotate(RBUFB(Data, Offset + i), ShiftSize); //*(BYTE*)(Data + Offset + i) = Rotate((BYTE)&Data[Offset + i], ShiftSize); return true; } static int CountBits(BYTE B) { int Count = 0; while(B != 0) { if((B & 0x01) != 0) Count++; B >>= 1; } return Count; } static BYTE GetTextShiftSize(char* Data, int Offset, int Size) { if(Size < 2) return 0; if(&Data[Offset] == 0 && &Data[Offset + 1] == 0) return 0; int BitCount = CountBits((BYTE)&Data[Offset + 1]) - CountBits((BYTE)&Data[Offset]); switch(std::abs(BitCount) % 5) { case 0: return 1; case 1: return 7; case 2: return 2; case 3: return 6; case 4: return 3; } return 0; } static BYTE GetDataShiftSize(char* Data, int Offset, int Size) { if(Size < 13) return 0; int BitCount = CountBits(RBUFB(Data, Offset + 2)) - CountBits(RBUFB(Data, Offset + 11)) + CountBits(RBUFB(Data, Offset + 12)); switch(std::abs(BitCount) % 5) { case 0: return 7; case 1: return 1; case 2: return 6; case 3: return 2; case 4: return 5; } return 0; } static bool DecodeTextBlock(char* Data, int Offset, int Size) { return Rotate(Data, Offset, Size, GetTextShiftSize(Data, Offset, Size)); } static bool DecodeDataBlock(char* Data, int Offset, int Size) { return Rotate(Data, Offset, Size, GetDataShiftSize(Data, Offset, Size)); } static bool DecodeDataBlockMask(char* Data, int Size) { BYTE s3 = Data[2], s12 = Data[11], s13 = Data[12]; bool res = DecodeDataBlock(Data, 0, Size); Data[2] = s3; Data[11] = s12; Data[12] = s13; return res; } static void decode_ObjectMap(BYTE* p) { if (p[3] >= 0x1B) { int decode_length = (p[0] << 0) | (p[1] << 8) | (p[2] << 16); DWORD key = key_table[p[7] ^ 0xFF]; int key_counter = 0; for (int pos = 8; pos < decode_length; ) { int xor_length = ((key >> 4) & 7) + 16; if ((key & 1) && (pos + xor_length < decode_length)) { for (int i = 0; i < xor_length; i++) { p[pos+i] ^= 0xFF; } } key += ++key_counter; pos += xor_length; } int node_count = (p[4] << 0) | (p[5] << 8) | (p[6] << 16); OBJINFO *node = (OBJINFO *)(p+32); for(int i = 0; i < node_count; i++) { for(int i = 0; i < 16; i++) { node->id[i] ^= 0x55; } node++; } } } static void decode_mmb(BYTE*p) { if(p[3] >= 5) { int decode_length = (p[0] << 0) | (p[1] << 8) | (p[2] << 16); DWORD key = key_table[p[5] ^ 0xF0]; int key_counter = 0; for(int pos = 8; pos < decode_length; pos++) { DWORD x = ((key & 0xFF) << 8) | (key & 0xFF); key += ++key_counter; p[pos] ^= (x >> (key & 7)); key += ++key_counter; } } decode_mmb2(p); } static void decode_mmb2(BYTE *p) { if(p[6] == 0xFF && p[7] == 0xFF) { int decode_length = (p[0] << 0) | (p[1] << 8) | (p[2] << 16); DWORD key1 = p[5] ^ 0xF0; DWORD key2 = key_table2[key1] ; int key_counter = 0; DWORD decode_count = ((decode_length - 8) & ~0xf) / 2; DWORD *data1 = (DWORD *)(p + 8 + 0); DWORD *data2 = (DWORD *)(p + 8 + decode_count); for(DWORD pos = 0; pos < decode_count; pos += 8) { if(key2 & 1) { DWORD tmp; tmp = data1[0]; data1[0] = data2[0]; data2[0] = tmp; tmp = data1[1]; data1[1] = data2[1]; data2[1] = tmp; } key1 += 9; key2 += key1; data1 += 2; data2 += 2; } } } }; }; #endif